(4x^2-7xy+9y^2-13)-(-11x^2-9xy+3y^2+18)=

Simple and best practice solution for (4x^2-7xy+9y^2-13)-(-11x^2-9xy+3y^2+18)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^2-7xy+9y^2-13)-(-11x^2-9xy+3y^2+18)= equation:


Simplifying
(4x2 + -7xy + 9y2 + -13) + -1(-11x2 + -9xy + 3y2 + 18) = 0

Reorder the terms:
(-13 + -7xy + 4x2 + 9y2) + -1(-11x2 + -9xy + 3y2 + 18) = 0

Remove parenthesis around (-13 + -7xy + 4x2 + 9y2)
-13 + -7xy + 4x2 + 9y2 + -1(-11x2 + -9xy + 3y2 + 18) = 0

Reorder the terms:
-13 + -7xy + 4x2 + 9y2 + -1(18 + -9xy + -11x2 + 3y2) = 0
-13 + -7xy + 4x2 + 9y2 + (18 * -1 + -9xy * -1 + -11x2 * -1 + 3y2 * -1) = 0
-13 + -7xy + 4x2 + 9y2 + (-18 + 9xy + 11x2 + -3y2) = 0

Reorder the terms:
-13 + -18 + -7xy + 9xy + 4x2 + 11x2 + 9y2 + -3y2 = 0

Combine like terms: -13 + -18 = -31
-31 + -7xy + 9xy + 4x2 + 11x2 + 9y2 + -3y2 = 0

Combine like terms: -7xy + 9xy = 2xy
-31 + 2xy + 4x2 + 11x2 + 9y2 + -3y2 = 0

Combine like terms: 4x2 + 11x2 = 15x2
-31 + 2xy + 15x2 + 9y2 + -3y2 = 0

Combine like terms: 9y2 + -3y2 = 6y2
-31 + 2xy + 15x2 + 6y2 = 0

Solving
-31 + 2xy + 15x2 + 6y2 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| 10x+12=2(5x+12) | | 2sin^2(x)-sin(x)+1=0 | | 2=2-3s-4s | | x+5(x-3)=33 | | 24/6=44/x | | 136/85 | | (2ux^3)/(10vx-6x^4) | | 3x+15+2x+30=180 | | y/7-3=4 | | 2x+(x-4)=x-16 | | (x^4-3x^3+4x-7)-(5x^4+6x^3-13x+10)= | | x+33=5x+13 | | x^4-3x^3+4x-7-5x^4+6x^3-13x+10= | | 2x-4=-16x | | X-3.2=-9.8 | | 5(3-x)=45 | | (x^2-3x^3+4x-7)-(5x^4+6x^3-13x+10)= | | -13+6g= | | 9/13=x | | X^2+41x=0 | | 28-2.2=11.6-54.8 | | 3x-2x-y=r | | 3(4)-6/x=12 | | 7/9=x/16 | | 2(m+8)=40 | | 20t^2+49t=0 | | 6(3m+5)=65 | | S^2-48s=0 | | u^2+39u=0 | | 3(x-6)=60 | | 4x^2-9x+13-2x^2-6x+7= | | 5(3n-2)=(5n+7)+6 |

Equations solver categories